

353 Christian Street, Unit #13 Oxford, CT 06478 (203) 262-9245

ENGINEER TEST CONSULT

Laboratory Report 4r-CGT-19-SSTHP-01.E

Physical Properties Testing

of

Econodek - Premium Series

produced in

Cambridge, ON

in accordance with

ASTM D4434-21

Prepared for: Tuff Industries, Inc.

9570 Bottom Wood Lake Road Lake Country, BC V4V 1S7, Canada

c/o: Bryan Hughes

Test Lab: NEMO etc.

10 Mauney Court Columbia, SC 29201

Date of Issuance: 2024-04-05

Laboratory Report 4r-CGT-19-SSTHP-01.E

Tuff Industries, Inc.

Date of Issuance: 2024-04-05

Page 2 of 4

D. Rhodes

LABORATORY REPORT

CUSTOMER OBJECTIVE

Establish physical property data in accordance with codified material standards.

TESTING SCOPE

Physical properties testing in accordance with ASTM D4434-21, Type III.

PRODUCT BY Manufacturing Location

Econodek - Premium Series Tuff Industries Cambridge, ON

TEST PROGRAM

N/A

PROJECT DURATION PERSONNEL

Number: 4r-CGT-19-SSTHP-01 Authorized: 2019-03-18 Nemo: S. Dock

SAMPLING:

MD NOTIFICATION: NEMO000125 MATERIALS ON HAND: N/A

TEST MATERIAL ROUTING MATERIALS RECEIVED: 2019-06-25

VIA: Per Customer Test Start: 2019-06-05

By: Contact Customer Test End: 2020-02-04

APPENDICES

Appendix 1 Statement of Limitation

Appendix 2 Decision Rule 1

CUSTOMER PO:

Appendix 3 Manufacturing Traceability & Test Material Routing Appendix 4 Tests, Standards, Equipment & Outsourced Log

4500049149

Laboratory Report 4r-CGT-19-SSTHP-01.E

Tuff Industries, Inc.

Date of Issuance: 2024-04-05

Page 3 of 4

RESULTS ¹ : Econodek - Premium Series Cambridge, ON ASTM D4434, TY											ASTM D4434, Type III	
PROPERTY			1						1		731111 D7737, 11FL III	
			TEST DATA 1 2 3 4 5			6	RESULTS Avg. SD		CRITERIA			
Overall thickness in.		0.057	0.057	0.057	0.057	0.058	_	0.057	0.000	≥ 0.045		
Thickness over scrim	in.		0.016	0.016	0.017	0.024	0.023	0.021	0.019	0.004	≥ 0.016	
Breaking strength	lbf/in.	MD	334	337	328	334	311	_	329	10	> 200	
		XMD	254	262	269	262	277	_	265	8	≥ 200	
Elongation at break	%	MD	27	27	27	27	25	_	27	1	> 1 Γ	
	%	XMD	27	27	27	27	28	_	27	1	≥ 15	
Seam strength	lbf/in.	XMD	494	475	470	469	507	_	483	17	≥ 199 (75% breaking strength)	
Tearing strength	lbf	MD	55.8	39.3	41.7	49.8	43.6	_	46.0	6.7	≥ 45.0	
	IDI	XMD	88.7	68.9	81.5	72.9	88.3	_	80.1	9.0	≥ 45.0	
Low temperature bend	-40°F	MD	Pass	Pass	Pass	Pass	Pass	_	Pass	N/A	No supelie	
	-4U F	XMD	Pass	Pass	Pass	Pass	Pass	_	Pass	N/A	No cracks	
Linear dimensional change	%	MD	0.0	0.0	0.0	0.0	-	-	0.0	0.0	- ≤ 0.5	
		XMD	0.0	0.0	0.0	0.0	_	-	0.0	0.0		
Change in weight after immersion in water	%		0.3	0.3	0.3	_	_	-	0.3	0.0	± 3.0	
Static puncture resistance 33 lbf		33 lbf	Pass	Pass	Pass	_	_	_	Pass	N/A	No puncture	
Dynamic puncture resistance 20 J		Pass	Pass	Pass	Pass	Pass	Pass	Pass	N/A	No puncture		
POST-HEAT AGING:												
Breaking strength	lbf/in.	MD	334	321	336	329	230	_	310	45	≥ 296 (90% control)	
	ibi/in.	XMD	235	245	241	244	55	-	244	7	≥ 238 (90% control)	
Elongation at break	%	MD	28	26	28	27	27	_	27	1	≥ 24 (90% control)	
		XMD	24	25	25	26	26	_	25	1	≥ 25 (90% control)	
ACCELERATED WEATHER	RING (5,	000 н	ours):									
Visual at 7x magnification			Pass	Pass	Pass	Pass	Pass	_	Pass	N/A	No cracking or crazing	

¹ All properties except overall thickness reflect performance of nominal 50-mil material, which has been found through criticality testing and analysis to be extendable to the nominal 60-mil material.

Laboratory Report 4r-CGT-19-SSTHP-01.E

Tuff Industries, Inc.

Date of Issuance: 2024-04-05

Page 4 of 4

COMPLIANCE STATEMENT

Econodek - Premium Series, as produced in Cambridge, ON, Canada has demonstrated compliance with requirements of ASTM D4434-21, Type III.

Signed: / David Carey

Small Scale Section Lead

Signed:

Robert Nieminen, P.E.

President

REPORT HISTORY:

 DATE
 EVENT
 NOTES

 2024-04-05
 FINAL
 New report per directive of program sponsor, supported by SPE

AUTHORIZATION

RN

This report and data contained therein is the sole property of NEMO|etc. and the named customer. This report shall be reproduced only in its entirety.

This report shall not be reproduced outside NEMO|etc. without written permission by the named customer.

TRPT- 0210 TRPT- 0048 REVISION HISTORY: LOG-0700 RELEASED BY: MDA

-END OF REPORT-

APPENDIX 1: STATEMENT OF LIMITATION

The results presented are applicable solely to the products tested herein.

APPENDIX 2: DECISION RULE 1

All results reported to the customer reflect observed values without incorporating measurement uncertainty. Determination of conformity to specifications will depend on acceptance limits, where results will be declared to pass if within the limits, and fail if outside the limits.

APPENDIX 3: MANUFACTURING TRACEABILITY & TEST MATERIAL ROUTING

Manufacturing traceability for component tests is confirmed by counter-signed contractual agreement or by signed statement from customer, retained in the custody of Nemo|etc. Test materials routing is included if randomly sampled, or if the sample bears Nemo|cert. certification mark. Random sampling is acceptable if conducted by an ISO/IEC 10720 or ISO/IEC 10725 accredited entity, which includes sampling on its Scope of Accreditation, and is independent of the manufacturer and the customer. If conducted by Nemo|etc., third-party random sampling is conducted in accordance with the sampling plan detailed in SOP-0005, and as stated in ICC-ES AC85.

APPENDIX 4: Tests, Standards, Equipment & Outsourced Log										
	TEST EQUIPMENT		CALIBE	RATION						
PROPERTY		SECTION	BASE METHOD	DESCRIPTION	Asset#	Pre-test	NEXT			
Overall thickness		8.2	D751	EJ Cady micrometer	0637	2019-03-20	2020-03-20			
Thickness over scrim		8.3	D7635	Meiji microscope	0232	_	_			
Breaking strength		8.4	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Elongation at break		8.5	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Seam strength		8.6	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Heat Aging (HA) 5	66 days, 176°F	8.7	D3045	_	-	_	-			
Breaking strength	post-HA	8.4	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Elongation at break	post-HA	8.5	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Tearing strength		8.9	D751, Procedure A	Instron 5969	0595	2019-04-10	2020-04-10			
Low temperature bend	-40°F	8.10	D2136	So-Low freezer 2	0264	2019-03-20	2020-03-20			
				Nемо ½" mandrel	-	_	-			
Linear dimensional change		8.12	D1204	Starrett 799 12"	0511	2019-03-19	2020-03-19			
Change in weight after imm	nersion in water	8.13	D570	Boekel Hot Tub	0522	2019-03-19	2020-03-19			
Static puncture resistance		8.14	D5602	Static puncture apparatus	0619	_	_			
Dynamic puncture resistan	ce	8.15	D5635	Dynamic puncture apparatus	0420	_	_			
				Mettler Toledo Scale	0514	2019-03-19	2020-03-19			
Accelerated Weathering (A	W) 5000 hrs	8.11	G154	QUV-SE	0596	_	_			
Visual	post-AW	8. 11		-	_	_	_			